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1.5.1. Introduction

Transport processes in plasmas are responsible for the loss of particles ar.1d energy
in situations where “ideal” plasmas would be expected to ‘be perfectly confined, and
for the departure from ideal behavior in other sit}xapons as .wcll. Among the
mechanisms for plasma transport are (1) macroscopic instabilities, (2) turbglenc‘e
due to microinstabilities, and (3) Coulomb collisions. Only the last mechanism is
considered in this chapter. ' '

The force on a given charged particle due to the other particles in the plasma
comes from the electric and magnetic field fluctuations. These fluctuations may be
Fourier analyzed into plane-wave components with different wavenumbers k. By
“collisions” we mean the fluctuations with wavelengths shorter than a Debye length
or kAp>1. o

For a system in local thermal equilibrium, the level of such fluctuations is well
known (Thompson and Hubbard, 1960; Rostoker, 1961) and the cffect.on the
one-particle distribution function is described by the Fokker.-Planck equation, (1).
This article treats only “collisional” transport and does not discuss transport due to
longer-wavelength fluctuations. Not only is collisional transport much better und'er-
stood, it is always present, and sets a lower limit on thﬁ: ratt.z pf entropy productlop
and transport in a plasma. It is therefore assumed, implicitly, tha_t macroscopic
MHD activity (or rapid macroscopic motion) is absent, and that microinstability-
associated fluctuations are also absent. ‘ ‘ . '

In this chapter only transport in MHD equilibrium systems is consxdered,. in
which the current density and the pressure gradient are related by (161). T}?e time
rate of change of macroscopic quantities is assumed to be s.nfxgll, and due entx.rely to
transport. Thus, the effects of transport on waves or instabilities are not con§1dered,
unless they are of sufficiently low frequency and long wavelength to sat.lsfy the
assumptions made in Section 1.5.3. Transport in more rapidly varying situations has
been reviewed by Kaufman (1960) and Braginskii (1965). A review by Kadomtsev

(1963) should also be noted. ' _
Plasma transport properties are derived here using an expansion procedurt? due to
Chapman and Enskog (Chapman and Cowling, 1952). The small parameter is taken
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to be the ratio of the mean free path to the characteristic length parallel to the
magnetic field, which is assumed to be of the same order of magnitude as the ratio of
the mean particle gyroradius to the perpendicular characteristic length. The fluxes of
particles and energy are calculated only to first order in these small parameters.
Third-order fluxes, related to viscous forces and higher-order thermal forces, are
omitted. The time dependences are assumed to be of second order in the small
parameter, compared with the rate of particle gyration in the magnetic field.

Although some general formulas are given, this chapter will be concerned mainly
with transport in magnetically confined plasmas, which are strongly magnetized.
This means that the mean particle gyroradius is assumed to be much smaller than
the mean free path. More general results may be found in the paper by Shkarofsky
et al. (1963). Explicit formulas for transport perpendicular to a strong magnetic field
are given for a plasma with an arbitrary number of different particle species (ionic
species distinguished by ionic charge and mass, in addition to electrons). Transport
parallel to the magnetic field is discussed for a simple plasma, with electrons plus
one ionic species, and also for a plasma with multiple ionic species.

In Section 1.5.2, the Fokker-Planck description of velocity space diffusion is
introduced. Properties of the Fokker—Planck collision terms are derived first, then
macroscopic relaxation times and the approach to thermal equilibrium are discussed.
The motion of a test particle is described next, and some important applications are
discussed. Finally, the approximations to the Fokker—Planck collision terms, which
are used in this article, are derived.

In Section 1.5.3, the classical transport processes due to spatial gradients and
electric and magnetic fields are discussed. The basic expansion procedure is de-
scribed first, then transport perpendicular to a magnetic field, in the strong field
limit, is derived. The next subsection 3.3 specializes to a simple plasma, indicates the
changes to the foregoing theory when the smallness of the electron-to-ion mass ratio
is exploited, and gives results for the parallel current density and the heat fluxes
carried by electrons and ions. A variational formulation is used to demonstrate the
Onsager symmetry relations. In the next subsection, transport in a plasma with
multiple ion species is considered. The ratio of electron mass to any ion mass is
assumed to be small, but the ratio of any two ion masses is arbitrary. In addition to
the electron fluxes, general results for the parallel ion transport coefficients are
presented. Finally, the form of the moment equations for the multiple ion-species
plasma is given and all of the preceding results are summarized.

1.5.2. Velocity space diffusion

The Fokker~ Planck equation

Plasma collisional transport is due to the fundamental graininess of the medium,
which is manifested through Coulomb scattering of each of the discrete charges by
all of the others. In calculating transport properties, one needs to know the effect of
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these charged-particle interactions on the one-particle distribution function f(x, v, 7).
This function is defined such that
f(x,0,t)dxd%

is proportional to the probability of finding one particle of a given species in the
phase-space volume element centered at x, v whose infinitesimal volume is d*xd’v at
time ¢. This expression is equal to the statistical expectation value of the number of
such particles in the phase-space volume element at time . Since this chapter will
not be directly concerned with fluctuations, f(x,v,t) (which will be called the
distribution function) will be thought of as the actual density of a continuous fluid in
phase space. The spatial number density is then given by

n(x,1t) =fd30f(x,v, 1).

For the most common applications of plasma transport theory, it is assumed that
the effect of charged-particle interactions is adequately described by the Fokker—
Planck equation (Rosenbluth et al, 1957). In this section this equation will be
discussed, as well as some of the approximations used in deriving it, and some
limitations on its applicability.

In a homogeneous plasma, in the absence of external electric and magnetic fields,
the time dependence of the distribution functions is assumed to be determined by
the Fokker—Planck equations (one equation for each particle species a):

af, 9 19
AR S CWAS 2.0,1,)] (1)

where the dynamical friction vector is

= 7% Lab Ma 3 f (o) 2
4, 2§:m§(l+mb\)fdvfb(v)u3

I

%Aab (2)

where
u=v—1,
and the velocity diffusion tensor is

= iﬂ_b 3. / i_i‘f_ — |
Da 2% mifdu b(v)(u u3)_§Dab‘ (3)

Each term in the summations over the index b represents the effect of scattering of
particles of species a by particles of another species b. Like-species scattering is
contained in the terms with b = a. Dyadic notation has been used for the second-rank
tensors, with / being the unit dyadic, equivalent to the Kronecker delta in subscript
notation. Also,

.y =2melelIn A. (4)
The Coulomb logarithm is defined (Spitzer, 1962) as
InA=1In(Ap/by) (5)
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where
Ap= (T/4'rrnce2)l/2
is the Debye shielding distance, and
by=e?/3T

is a typic§1 “distance of closest approach” for a thermal particle.
An equivalent form of the Fokker-Planck equation is obtained by using

‘7.(_’-ﬂ)=—_2.'1__ d (1 _ uu
do \u 3 . 3_07(;_;)
and integrating by parts in the expression for A,. The result,
af a Cap /
a_ 9 v (1 wulfl daf, , 1 9,
ar dv Zh:mafdv(u u3)[71: 8vf”(”)"m_,,a_§fa(”) , (6)

is kngwn as the Landau equation (Landau, 1936).

This result was obtained by retaining, in the Boltzmann collision integral, only the
small-anglc scattering cvents, and introducing a cut-off at the Debye ’shieldin
dl_stancc in the integral over impact parameters, which would otherwise be lo arith%
mxcally. chvergept for the Coulomb scattering law. Although the Boltzmann eqiation
was (_)rlgm_ally intended to describe a gas of particles interacting through binar
cplhsxons. it may be applied to a plasma, in which many charged particles imerac)tl
s¥multaneously, if the effects of three-particle correlations are negligible. Man
sxmgllaneous small-angle scattering events then have the same averaged effc;ct on 2)1’
pamc'le as a sequence of independent binary collisions. The two-particle correlation
effectively cuts off the Coulomb potential at a distance of about one Debye length

' A som('zwhat more fundamental derivation of the Fokker—Planck equation can b;:
given, using th-e analogy between charged-particle diffusion in velocity space and
Browmap motion. The form of the Fokker-Planck equation follows from th
assumption lhat. velocity diffusion is a Markov process (Chandrasekhar, 1943a b)e
Specific expressions for the Fokker-Planck coefficients Ay, D, are the;l obtai;led

by again using the Coulomb bina atteri ici
ry scattering law. These coefficient i
(Rosenbluth et al. 1957; Trubnikov, 1958, 1965) in the form fis can be wriiten

¢ m,\ dh
A, =2-—‘ih(1+_".)__”
b m? m, | dv (7)
D, =2Sa 3’8,
ab rn‘z‘ Hvau (8)
where
— 3,7 , /
8(v) = [ @S, (v)]o= ] o)
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and
fh(v’) (10)
. 3.

h,,(u)—fd o}
By using

91 __u

v u u3

and

where
u=v—10,
1 1 3).
7) and (8) are easily seen to be equivalent to (2) and ( .
( )The ffu?clions g, h, are called Rosenbluth potentials, because of an electrostatic
analogy. By using

Viu=2/u
and
vi(1/u)= —478(u)
where ©2 is the Laplacian operator in velocity space, and 8(u) is a delta function,
v
(11)
vih,= —4nf,. (12)

Thus, 4, is analogous to the potential in real space due to a charge density fb., o 115
the potential which results from considering — hy/2m as the charge density. It
follows from this analogy that if f, is spherically symmetric th.en g,,,and h, are also,
and that h,(v) and g,(v) are affected only 'by j",,(u’) with v’ < v. Thus, the
dynamical friction vector 4 ,(v) and velocity diffusion tensor D{,(v) acting on a
particle with a given speed v, are determined only by interactions W1th s.lov.ver
particles (Belyaev and Budker, 1956). It also follows. that the dy'nar.mcal fl‘l(.lllOn
force on a fast electron decreases as v~ 2, by analogy with the electric field outside a
spherically symmetric charge distribution. ' ‘ lows.
The right-hand side of the Fokker-Planck equation can be written as follows:

v2g, =2h,

9 13
L TR VAA (13)
at 5
where the Fokker—Planck collision terms can be written, using (11), as
g (m,dh, 1 a%g, 9fy (14)
C”b[f“’f”]=—r“z’3 av'(mb%f“ 2 dvdv dv

B v R eI
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where

.2,4
r - 4ma¢21nA . (15)
m,

At this point it may be well to mention that in the derivations referred to above, it
was necessary to assume that In A > 1. Since A is proportional to the number of
particles in a Debye sphere (i.e. a sphere whose radius is a Debye length), this
number must be very large. When it is, the average particle kinetic energy is much
larger than the average potential energy of two charged particles. The many
small-angle scattering events then have a greater cumulative effect than the few
large-angle scattering events. For most densities and temperatures of interest In A is
in the range 15-20, so this assumption is justified.

A still more fundamental derivation of the Fokker—Planck equation starts by
taking into account that the Coulomb interaction between two particles is modified
by the rest of the plasma in a more complicated way than by static Debye shielding.
Thus, a moving electron has a distorted shielding cloud, and a rapidly moving
electron radiates Langmuir waves by Cerenkov emission. The Balescu-Lenard
equation (Balescu, 1960; Lenard, 1960; Hubbard, 1961) which includes these effects,
differs from the Landau equation, (6), by the replacement of

I (v=v)(v-0)
lo—v]

i 6

jo— v’|3
by

l/d3kkk8(k'v—k°v) -
4 k4|5(k'U,k)I2

Here e(w, k) is the longitudinal dielectric function, whose zeros determine the
dispersion relations for electrostatic waves. In the integral over wavenumbers, which
corresponds roughly to the Boltzmann integral over impact parameters, there is no
need for an artificial cut-off at small values of k, since the integral converges
(because € ~ k=2 for k — 0). For particle velocities which are not much larger than
the root-mean-square value, we may use the static dielectric constant

e(0,k) =1+1/k23,

(17)

and then (17) reduces to (16). Thus, the Landau equation is recovered, with the
Debye length appearing naturally in the Coulomb logarithm, without being intro-
duced artificially as a cut-off.

For higher-velocity particles, wave-particle effects, which are not included in the
Landau equation, may be important. However, these may not be described correctly
by the Balescu~Lenard equation cither. This is because Langmuir waves with high
phase velocities are very weakly damped, and take on a “life of their own”,
especially in a non-thermal equilibrium plasma (Rogister and Oberman, 1968). Thus,
a separate equation governing the time dependence of the wave amplitudes is
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necessary. Since the equations which result are too complicated to be useful in most |
transport applications, we simply omit this portion of the wave spectrum.

The Landau form of the Fokker—Planck equation is also commonly used in
applications in which there is an external magnetic field present. A generalization of
the Balescu-Lenard equation which includes the magnetic field was derived by
Rostoker and Rosenbluth (1960) but it is much more complicated than the Landau
equation. Montgomery et al. (1974) have concluded that the only change in the
Landau collision term needed, when the mean electron gyroradius is much smaller
than the Debye length, is the replacement, in the Coulomb logarithm, of the latter by
the former. In using the Landau equation, we do not include the transport caused by
thermally excited convective cells (Taylor and McNamara, 1971; Okuda and Daw-
son, 1973) although it may be more important than collisional diffusion in some
situations.

Properties of the Fokker— Planck collision terms

-The Fokker-Planck equation has several important general properties which are
important in transport theory applications, which we now demonstrate.

Positivity of the distribution function. That f, cannot become negative, if it is
non-negative initially, can be seen as follows. Suppose f, went to zero at a single
point v = v,; then df, /dv =10 there also, and

fu(v)=1(v— v )-(8%f/8vdv)y*(v—1,) > 0

for small jp— vy] = 0. The tensor (3%f/dvdv), must therefore be positive-definite.
Equation (6) at v = v, then becomes

afa_ Cab 3. ’ / uu g, azfa 1
Lt foun 4 - ) 5ok, :

{ u’

wherc? u=uv - v'. By defining é, = u/u, with é,,é, any two other mutually per-
pendicular unit vectors, we have

|  uu é,6,+é,é,
u u3 u
so that

afa _ Cah 3 ,fh(ul) Py azfu - - azfu "
az"zb:mgfd" P L Uy vy R T N P T ) ]
Thus, f, becomes positive at v = v;: collisions tend to “fill in” any holes in velocity

space.

Particle conservation. By writing (6) in the form

af, 3
at  do I )
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and integrating over velocity space, the divergence theorem can be used to show that
d a
S der = (a2 o] =
atfdvfa—fduav.la——() (19)

where it has been assumed that [, — 0 sufficiently fast, as v — o0, that the surface
term at v = o0 is zero.

The remaining properties are most conveniently deri i i
erived
alternative form of (13): ’ ine the following

d/,

=L

a[ n b (20)
where

b 9 s AL _

Cor= o2 55| PO () = 2 (0,) (a1)

where 4 = v— v/, and
LI I
x::h(v’v)_ nla avlnfa_Ea—vllnfb' (22)

Moment . s . .
yie];:izse:n um conservation. Multiplying (20) by m_v and Integrating over velocity

d (.3
Ey /d vmof, = %Fab (23)

where

= [ 4 - , N
Fy= [@ompCy=—c, [ 0 a0, (0)f, (v )(— - ﬂ)-x W0, 0)  (24)
u 3 “
?s the momentum transfer rate, or friction force. Because c,, = Cpq» and because the
integrand simply changes sign upon making the replacements a & b, v v/, we have
Fubz—Fba' (25)

That is, the collisional momentum transfer from species b to species a is equal in

mggnitude and opposite in direction to that from a to b, which reaffirms Newton’s
third law. In particular, with b = a,

F =
ua = 0. (26)

That is.‘lhe tgtfxl momentum of a given species of particles is conserved by
like-species collisions. Summing (23) over all species a, and using (25) yields:

d
E;/d%mavfa=§:§ﬂb=0. (27)

That is, the total momentum, including all species, is conserved by collisions.
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Energy conservation. Multiplying 20) by 3m (v~ u,)* and integrating over velocity
yields:

—(?-fd3u%ma(v—ua)2fa= ZQab= Z(fdz,ufn—a_cab_ua.Fab) (28)
at 5 >
where '

Qs bty oy = — [ @0 [ 0L, (0) () 0" (—~—) xep(0:0)  (29)

is the energy transfer rate. Since c,, = + ¢;,, upon making the replacements a < b,
ve v,
, {1 uu ,

Qba + u,* Fba = cabf dBUf dJD’fa(v)fb(U )U '(E - :‘?).Xab(v’ v )

Adding (29) and (30), using
I uu
—_ —_——— =0

(/=) ( u3)
yields: 3

Qab+Qba= (ub_ua).Fab ( 1)

which expresses the conservation of energy in collisions between species a and b. In
particular, if b= a, then

0,,=0. (32)

That is, the total energy of a given species of particles is conserved by like- -species
collisions. Summing (28) over all species a, using (31), yields:

_aa_;gfdav fa=za:zb:(Qab+ua.Fab)=0'

That is, the total energy, including all species, is conserved by collisions.

(30)

m *

(33)

The H-theorem. That the only time-independent distributiqn functions are Max-
wellians can be proved as follows. The entropy density is defined as

s=-L [@f(inf,+k,) (34)

where k, is a constant determined by quamum mechanical considerations (Landau
and Lnfshuz 1958). Differentiating (34), using particle conservation, yields:

Boo ¥ [dolnf, aft". (33)

Using (20) for df, /¢ and integrating by parts yields:

g LR CRACTAC eI

- B (o). (9
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The right-hand side of (36) can be written in an alternative form by making the
replacements a « b, v & ¢'; adding these two forms yields:

ds 1 , , I uu
_a—t.zEZ%cahfdav/d:’vfa(v)fb(v)Xab.(u 3)’Xab>0,

u

(37
where the non-negative property follows from

X'(i*ﬂ) x——-(l—cos a) >
U oy

where cos a = x * u /(|x|u). Equality in (37), which is equivalent to the condition for a
time-independent solution of (20), requires that

d 1 4

1
Xab(v v’ __'a—';l fa_ﬁbﬁlnfb_

G (v, v') (0= v)
for some scalar function G,,(v, v'). Taking the curl in velocity space yields:
a aGah ’
70 X Xap = 0=—32 X (v~ v
which implies that
Guh = Gab(!v - UII)'

By setting v'=0 and then v=0, it is not hard to show (Montgomery and Tidman,
1964) that

L(2,
m,\ do n

and

1o 3 5),, =

G,,(Jv—v) = y = constant.

It follows that

R
p o/, =B+yv (38)
which, upon integrating, gives
Inf,=m,(a,+Bv+yv?/2). (39)

That is, the distribution functions must be Maxwellians with a common mean
velocity and temperature:

fu=na(ma/ZvrT)s/Zexp[—-ma(v—u)z/ZT]. (40)

Macroscopic relaxation times

When two different particle species are not in thermal equilibrium with each
other, collisions tend to make their distribution functions relax towards thermal
equilibrium. An estimate of the relaxation times involved is obtained by calculating
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the collisional rate of change of moments of these distributions, approximating them
by Maxwellians.

Collisional momentum transfer rate. The momentum transfer rate, defined by (24),
can be written in terms of the dynamical friction vector:

Fy=m, [ d04,,f,(v). (41)
Using the definition of 4, (7), and integrating by parts yields:

o (42)
dv

Fub= - Z:Fama(l_*_ ma/mb)fdsvhb(v)

By substituting a Maxwellian with mean velocity u,,

fo(0) = (ny /203 Jexp| - (0= u,)/0}] (43)
into the definition of A, (10), the integral can be carried out to give
_ n, d)(lyl) (44)
h,,(v) v, |
where y = (v— u,)/v,, and $(x) is the error function,
2 [ e (45)
d(x)= w‘/z-/(; dye ™.

£, is taken to be a Maxwellian with mean velocity u,, and expressed in terms of the
variable y, assuming that

Iub - ual < ‘Ua

to expand it to first order in u;, — u,. Then by using y as the integratiqn variable in
(42), the integral is evaluated using standard integral formulas to obtain

I:ab=mana(ub_ua)/1-ab (46)
where the momentum-transfer time is defined by

4 n,22T,(1+m,/m,)

b = (47)
T (o)
where z2 = e2 /e, v} = 2T, /m, and I, is defined by (15). Note that, since
MN,/Tap = MM/ Th) (48)
Fp=— Fp,» (49)

consistent with momentum conservation. _

Thus, 7,, gives the order of magnitude of the time for en.ough momentum to be
transferred between two particle species to eliminate the difference in th_exr mean
velocities. It should be emphasized that (46) gives only a rough approximation, since
quantitative results for the momentum transfer rate can gencrally not be obFamed
without considering the distortion of the distribution functions from Maxwellians.

T

e 30 v e Mt 7y o e D
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Collisional energy exchange rate. The energy exchange rate, defined by (28) can be
written in terms of the dynamical friction vector and the velocity diffusion tensor:

Qup=m, [ do[(v=u,)d,, +3TiD,, ]/, - (50)

where “Tr” denotes the trace. By using the definitions (7, (8) and (1D,

Q.= z,fl"amafd%

m, oh,
(I+mb)(v—ua)-%+hb f. (51)
Again taking f, and f, to be Maxwellians (but with zero mean velocities this time)
(44) may be used for the Rosenbluth potential 4,; after carrying out the integrations,

3n,m, (T, - T,)
Qup= T(my, +m,) (52)

where 7, is given by (47), which was first derived by Spitzer (1940). Note that, from
(48),

Qab=_Qba’ (53)

consistent with energy conservation.

The approach to equilibrium in a simple plasma. In a simple plasma, i.c. one with one
ion species, the rates at which electrons and ions equilibrate separately and with each
other may be compared. By regarding a and b in the above formulas as labeling two
different components of the distribution of a given species, e.g. electrons, it can be
seen that these parts exchange both energy and momentum on a time scale 7,, given
by

4,4
T—l=ﬁﬂl/2nﬂzae InA (54)
aa 3 mL/ZT,,VZ :

Thus, the ions come to equilibrium among themselves, with their distribution

function approaching a Maxwellian, at a rate 7 !, which is considerably slower than

the rate 7.;' at which the electrons Maxwellianize, since
- /2 .y
Ti lm(’nc/’ni) Tee (55)

(assuming T, ~T;). The exchange of energy, and consequently the temperature
relaxation between electrons and ions, occurs at a still slower rate, of the order of
(m./m;)7;". The rate of transfer of momentum, and the decay of the difference in
mean velocities, u, — u;, would occur at a rate
2,4
n;zteln A
(2n)' Pt 2 (56
m\/2T3/2 )

4
1'._l=—

€1 3

(which is of the same order of magnitude as 7..') except for electromagnetic
induction, which tends to prevent the current density from changing that rapidly.
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Scattering of a test particle in a plasma

The velocity diffusion process described by the Fokker—Planck equation can be
most easily understood by considering a test particle, that is a particle whose velocity
is assumed to be known at some initial time. The distribution function for this test
particle will be normalized so that its spatial number density is

fd30f1=”t' (57)

The test particle constitutes a particle “species” which is labeled by “U". We assume
that f, is spatially homogeneous, so that spatial gradients and electric fields do not
enter the problem. The equation to be solved is then

af, ad [ 14 ]
_a_t__— Jo Atft_z—a_v (thx) (58)
The sum over b in the coefficients 4, and D,, as given by (2) and (3), will not include
the test particle species, assuming that the spatial density n, is small compared with
the densities of the plasma species. Also, the distribution functions for the other
species will be assumed to be given functions. Thus, (58) becomes a linear equation

for f,.
Suppose that the test particle is known to have velocity v, at time ¢ =0, but its

spatial position is completely unknown:

f(znla(v—UO) 9)

att=0.
For short enough times, the test particle’s velocity should remain well defined:

filv, 1) =nd(v—u(1)) (60)

where u(?) is a function to be determined, which is such that u(0) = v,. Inserting this
expression into (58), multiplying by v and integrating over velocity space yields:

du/dt=A((u) (61)

which is a differential equation for the expectation value of the test particle’s
velocity.

The test particle’s velocity does not remain exactly well defined for =0, but
becomes uncertain, because Coulomb scattering causes it to walk randomly away
from its initial value. A better approximation to the solution for f, can be obtained
as follows. Let

flo,t)=nF(w,1) (62)
where
w=v—u(t) (63)

and u(¢) changes in time according to (61). Since F, should remain sharply peaked
about w= 0 for short times, like the delta-function approximation of (60), we may

’;;
:‘4
)
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replace v in 4,(v) and D,(v) by u(t). This leads to the equation

aF, 1 8*F,
a ED‘(u)° dwdw

(64)
where the dots indicate sums over indices. Using the initial condition

FK(W’O) = 6(“’)7

the solution (Chandrasekhar, 1943a,b i i ing i
(he veriable o 1 o rasekhar, 19 ,b) can be obtained by Fourier transforming in

exp[ ~ IweM~'(1)w)

F;(”” l) = 3/2
(27)*[det M(1)]'* (%)
where det M is the determinant of the matrix
M(t)=['d=D,
(1)= ['4rD,(u(+)) (66)

and M~ is its inverse.

f The uncertainty in the‘tesl-parlicle’s velocity after time ¢ can now be obtained

érorre} r'rlx)zn:‘eynots (:{1 F. Let é, be a unit vector parfallel to the initial velocity v,, and let
Vzi 3-be two other mutually.perpendlcular unit vectors. Then the uncertainties in
elocity in directions perpendicular or parallel to the initial velocity, defined by

(80, )"y = [ &o[(0&,)+ (v&,)] (- u, 1) (67)

«4002)E/haﬂ(v‘"}éJzﬁ(v—",U

are determined (for short times) by

(68)

(d/d’)«AUL )2> =é,°D,+é,+é,-D,-¢,

2 (69)
(d/d’)<(A”1|) )=¢é"D-é,.

(70)

In the important special ca 1 ic fi
he ir se of isotropic field particle distributi icti
and diffusion coefficients have the form P putions the friction

A (v)=-5(v)v

where Y
v!(v)=-T, 2(1+ﬁ)l%
‘%z” my /v do (72)
is the slowing-down rate, and
D(v) = D! ( ——”1’) (o) =
(v) J.(v) ! o2 +D||(U)02 (73)
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where
t — 2 dgb
DJ_(D)"(Fx/v)ZZb_'d— (74)
b v
t 2 dng
Di(v) =LY zi— (75)
b dov
are the perpendicular and parallel diffusion coefficients, with
I,=4mnzle*(InA)/m} (76)

where g,(v) and h,(v) are the Rosenbluth potentials, defined by (9) and (10). In this
case, the rate of change of the short-time uncertainties in the test particle’s velocity
are, from (69) and (70),

(d/d1){(Av, )*y =2D} (u)
(d/de)((4v,)*y = Di(u).

The rate of change of the expectation value of a test particle’s kinetic energy is
related to the slowing-down rate », and the diffusion coefficients D, and Dy:

(1)
(78)

(79)

which defines the energy-loss rate . This rate is not necessarily positive: a fast test
particle tends to lose energy, but a slow one tends to gain energy.

The test-particle form of the Fokker—Planck equation can be written more simply
when the field particles’ distributions are isotropic. By using (71) and (73), the
equation can be written in spherical velocity space coordinates as

(d/dt)<%m,(u + Av)2> = —mulvl + ’"1(Di +%D|'I) =—viimu?

3fl__Di(U) Va1 of g Ly O
TR £2f + I v (fo+le| au) (80)
where
Di— D! | dD,
t_ 1 1 1 I
=yo+ 390 (81)

and the operator £ is defined by

J af 1 af
2Wf=—(1—pt)5=+ —7 =3 82
(2€ is the angular part of the Laplacian operator), where v, &, { are the spherical
coordinates, and p = cos .

Applications of the test- particle equation

Maxwellian field particle distributions. In order to specifically evaluate the functions
v,(v), D, (v) and D(v), the further specialization is made of assuming that the

o

BRI AW

o B i M L
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lasma electron i b ity distri
p s and ions have Maxw: "% 1 velocity distributions:

fp(0) =

n, eI:p(___ 02/02)
,”3/20137 b

(83)
where
v, = (27, /m,)"".
Then the Rosenbluth potentials 4 5(0), g,(v) can be evaluated as
hy(v) = "b‘p(U/Ub)/U

(84)

(85)

and

g (v) = "b0b¢(v/vb)
where

(86)

$(x) = (x +1/2x)B(x)+ 7 /2%~
and where ®(x) is the error function, (45). Thus, from (72)

2
o) = T E B (14 2 g 0
0 b Ub

(87)

m, o (88)
and from (74) and (75)
T,
Dl =t 2 L L
(v) ;. gnbzb[tb(vh) G(Db)J (89)
2T,
Di(v) =t 262
i(v) > gnbsz(”b) (90)
where
G(x) = P(x)—x?'(x)

(o1)

pitzer, 1962). The energy-loss

2x?

is the Chandrasekhar function (Chandras
. ekhar, 1943;
rate, defined by (79), is given by S

2Im nyz?
=ht3_tz_u[¢(i)_(1+ﬂa 2 o2

v s My Op mej v, v, /]
For a single species of field particles b, the slowing down rate given by (88) is

equal to 7', where ¢, is the slowin i i
. , s g-down time def; i
deflection rate, vp, may also be defined by elined by Spitzer (1962). A

Ve

(92)

vy =2D! /v? (93)
. which in this case equals 15!, where ¢ is Spitzer’s deflection time
The form of the test-particle kinetic equation is .
a1, nyz? 9
—=-v,Cf + T bh L fl‘- "o
o T2 Ll au[”G(ub)(au*_T‘;_ﬁ ' (%4)
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If all of the field particle species have the same temperature T, then the only
time-independent solution of this equation is a Maxwellian with temperature 7. The
test particle distribution must therefore spread out in velocity space, starting from a
delta function, and ultimately become isotropic, and, in fact, Maxwellian, as it
reaches thermal equilibrium with the field particles.

We now give results in limiting cases specifically for a simple plasma, in which the
ions have charge z;e. The test particle will be assumed to have charge z,e. The
slowing down rate, and the perpendicular and parallel diffusion coefficients are
given by the following approximate formulas, in which

I =4nze*(InA)/m;}. (95)
(a) For v < v, 0!

v(v) = (4/377‘/2)ncl’l[(1 +m/mg) /0l +z(1+ m,/m,)/o}] (96)

D} (v)=Dj(v) = (4/37'?)n L, (1/v + 2, /v;)- (97)

For very small velocities, the slowing-down rate and the diffusion coefficients are
independent of velocity, so the test-particle motion is the same as Brownian motion
(Chandrasekhar, 1943).

(b) For v, < v < 0!

v(v)= neFt[(4/3'rr‘/2)(l + m‘/mc)/ug +z,(1+ ml/mi)/u:‘] (98)
D! (v) = n.L,[(4/37'2) /0, + 2, /0] (99)
D;i(v)=neI‘l[(4/37r'/2)/uc+zivi2/03]. (100)

For this range of velocities, the electron collisions have the same effect as in range

(a), while the ion collisions have a much different effect. Diffusion due to ion

collisions is primarily perpendicular to the test particle’s velocity, and both the

slowing-down rate and the diffusion coefficient decrease with test-particle velocity.
(c) For v;,v, < v:

v(v) = n (L /o) [(1+ m/m)+z,(1+ m/m))]
D} (v) =n(I,/v)(1+z)
D|‘|(U) = nc(r‘/u3)(ve2 + ziviz)'

For very high velocities, diffusion is mainly perpendicular to the velocity of the test
particle, with electrons and ions making roughly equal contributions. For an ion test
particle the slowing-down rate is due mainly to collisions with electrons, while for an
electron test particle the electron and ion collisional contributions are roughly
comparable.

The macroscopic relaxation times discussed above are consistent with the evalua-
tion of (88) and (92) for a thermal velocity. For velocities much higher than thermal,
however, the values given by (101)-(103) are much smaller. Thus, the high-energy
tails of the distribution functions thermalize much more slowly than the thermal

portions.

(101)
(102)
(103)

A YT
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Slo.wm'g down of energetic ions. Neutral beam injection (Stix, 1971) is a method
which is pre§el?lly being used to heat plasmas in magnetic confi’nement experiments
The energetic ions which result from ionization or charge exchange of the in'ecleci
neutral§ then slow down because of Coulomb collisions and deposit their lginetic
energy in the plasma (Sivukhin, 1966). Provided that the density of the energetic ions
1s not too large, their distribution function satisfies the test-particle for%n of the
Fokker-Planck equation. Assuming the plasma to be isotropic, this takes the form
(80), except for a source term at the injection velocity which w:)uld also have to b

1pc1uded: Fgr a plasma in which the electrons and ions have Maxwellian distrib -
tions, , s given by (88) while D, and D, are given by (89) and (90) -
the};ozgtgcsagg;argetic 1ions, the most relevant range of velocities is u-‘ <v <y, and

- may be use i l 5
e Slowmg-down :; Ifeor ¥, D, and D). Using the fact that m, ~ m; > m,
e ﬂ)ﬁ]
m; | 3

»;<v)=n,n[(i) .

3072 ) m o} (104
and for the parallel diffusion coefficient
2
D“(U) . nert 4 + Zi OV}
o |\ 37!/2 v? (105)

in which the first (electron) terms dominate only f
. or v/v. 3 (z, )13
the perpendicular diffusion coefficient, ’ /%5 (zyme/m )7, and for

Dy (v)=nTIz; /v (106)

in which only the ion collisions are i
e by important. The energy-loss rate (92) can be

by = 2n Imz, _1_ i
m; IR (107)
where
372 m,z, |\
v, = —— v,
4 m e (108)

Tl;le energy from ths: inj?cted ion goes mainly into heating electrons if v > . and
otherwise it goes mainly into heating the ions, :

In (80) the parallel diffusion can be neglected compared with the perpendicular

diffusion, since D, < D i
, since Dy , » so the equation becomes, with the inclusi
term at the injection velocity, sion of a source

af, 1 m 0 3
—=nlz{—¢F C e
ot ety 1{03 £f+ nl.'Uz P (03 +l)flJ}

+88(v—10y)8(p— po) (109)

5. .
where C is defined by (82) and where v and p are the injection speed and the cosine
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of the injection angle. The source has been assumed to be symmetric about the axis
of the polar coordinate system. This equation can be solved analytically (Cordey and
Houghton, 1973) to give the ume development of the injected ion distribution
function. The solutions show diffusion in angle and a spreading in energy due to
slowing down of the ions at a well-defined rate. Diffusion in energy, not included in
(109), would broaden the energy distribution slightly and accelerate a few ions to
energies greater than the injection energy.

Electron runaway. Although the Fokker-Planck equation was derived assuming no
electric field, it is commonly employed in applications where an electric field is
present. In addition to the transport (current and heat flow) driven by an clectric
field, which will be considered later, it is of interest to investigate the behavior of the
electron distribution function at high energies. Since the fraction of electrons in the
high-energy tail of the distribution is assumed to be small, the test-particle form of
the Fokker—Planck equation applies. Assuming that v > v, > v; and since m = m,,
(101)-(103) give

v, = (nI,/0°)(2+z)
D, =(nJT./0)(1+ z;)
D= n /0.
Thus, (80) becomes, with the inclusion of the electric field term,

of e o 3r (=) 9f
]

~ (1+z;) 1 9 l_'i_a_f_
"nerc[ o Bf+v7- Bv(f+ 20 av)

where the axis of polar coordinates has been chosen to lie in the direction of the
electric field. By rewriting this equation in terms of the dimensionless velocity v/v,
and the dimensionless time /7., where T t=nlT./ v, it is found that the solutions
depend upon the dimensionless parameter E/Ep, where

(110)

Ep=mp./eT, (111)
is called the Dreicer field (Dreicer, 1960).

Note that the collision terms become relatively small at high velocity. In particu-
lar, the angle-scattering rate D, /v* goes as v~ 3, while the electric field term goes
roughly as v™'. The electric field term thus dominates for v > vy, Where

vg = (E/ED)—l/zvc

is the runaway velocity.
The runaway of a single

an §

test electron is described by (61), augmented by the
electric field acceleration term. The rate of change of the test electron’s kinetic |

|4
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energy is given by

d (lm ul=—eE l
qrlame e 'u—VE(—z-mcuz).
Since the energy-loss rate (92) can be approximated by

vg=2n.T, /v’

(113)

it is C]Cal that the k.ll’lCllC Cllelgy mcreases llldehllllely I()l u Up, alld that f()l
u > ‘l)R lllﬁ]e l'S eSSC][lia”y hee acc Cle]ﬂ“()]l (Dl ‘]le ele( tron g
R

IVIuCh allalytlcal alld p S been dOlle on [lllS plOblCm see ‘.he
com Uta“()“al W()lk ha N
) )R unct 1 D ]l:] ls:ft IEC“SI:I: S
I“tc atin 110 over all VClOClty out toa maximum VCIOClty v vVES
m g‘l

] Onm
—{d 2 = £ !
d,f_l ufo v dvf(u,v)—mcEv.if_lud#f(#,vm)

==vef du["o*dof(s,0)

where the velocity v_ has been
re m taken large enough that the collisi
een colli ibution i
gz/gll;gxt;led 2For Oy > vg, 1t 1s found that y; becomes indeSI::)x:l(ziil C?m? B
p < 0.2, and for z; =1, Kulsrud et al. (1973) found pendent O b For

YR = 0.355‘3/86xp{—- [(2/8)'/2+(1/4e)]}
where

e=E/2E.

(114)

T Ll i i
he non-vanishing of Yr Means that some surface terms, obtain
b

parts in velouity ed by integration by

are a
ctually not zero when E = 0. Some care is therefore needed

h g
wnen usin moments Of the IOkaI l

small E/E,. y neglected are, in fact, exponentially small for

Approximations to the Fokker- Planck collision terms

Small -rati imati
e lerrnrzzscrat:l)] (;ngro,:\xl:{aﬁons. Approximate forms for the Fokker—Planck colli
ab a 1C i 1 A
Smimad o b are simpler and more tractable in applications can be
m,/m, <.
In the equation (14) for C i
, the term involvi i igi

fact ab> L ving K, is negligible b

ctor m, /my, so only g, defined by (9) needs tobbe evilugated Ij;a:ssiigf the small

v—v|=|v—u, -
lo=vl=[v—u, (U’_”b)lzlv_uh,’

an o . .
approximation which is valid for velocities. v (of the a species) and t' (of the b
e
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species) such that
lo—uy|~v, > 10— up| ~ vy,

where u,, is the mean velocity of species b,

8 _ (i_ﬂ) (115)
dvdv Plw 3
where
wW=0—U,.
Hence,
Cltin =3 Emei ] (2 -2} 5. (116)

which represents isotropic scattering of a species particles'in the reference_ framt;
moving relative to the laboratory frame with the mean velocny u, of tl}e particles o
species b. The next correction to (116) is of order m,/m,; its form is usually nc;t
needed explicitly, although its energy moment, calculated with f, and f, Maxwel-
lians, may be obtained from (52). _ .

Equatign (116) may be linearized by assuming f, and f, to be close to Maxwellian,
with

117
fa = faO + fal ( )
where
" — 202 (118)
faO = 713/202 exp( UH/Ua )
and
9
|far/faol <1 ‘ o (119)
(and similarly for f,). Thus, u, is assumed to be a first-order quantity, with
20
lu, /v, <1. (120)
Neglecting terms quadratic in f,, fy, and 4, C,;, becomes
n era a 2 .%‘ m, 121)
Calb(fal;fbl): ’72:;3 —a_v'(v I- D‘D) av + Ta v ubfaO (
where
122
"b"b=fd3wfm (122)

which is a linear operator acting on f, and. fy1- The momentum transfer rate
obtained from this linearized collision operator is

m.n_u v
el 23T, [ 0 fu(0)
Tap v

123
F,- (123)

where 7, is given by (47), with terms of order m,/m, neglected.
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The small m, /m, limit of C,_ is obtained in a similar way. Starting with

a (m, dh, 1 3%, 3,
Cbu[fb’fa]= £ &

—-z2r-_. —— e b

P9 \m, dv’* 2 dvdv dv
approximate expressions are needed for dh,/dv and 42 o/ dvdv. The former is
obtained from the definition of h,, (10), by using w=ov— ¢ as the integration
variable and expanding f, in a Taylor series, assuming

VU, Ku=0v'~vy,.

(124)

Thus,

dh, d’u df, d*u 3%,

F il e mREl el o (125)
Similarly,

azga 3., ’ I U’U,

8080—/(10'[“(0)(?_ (v’)3 : (126)

The linearized form of (124) is obtained by using (117)-(119) and neglecting
quadratic terms, as before:

Cba = Cba[be’ fa0]+cl{a

(127)
where
myn, T\ 9 ‘
Cba[be’faO] = m.—bnb:’:a-b (1— Tb) o (Ufbo) (128)
with 7., defined by (47) and
1 mgn u,\ df
£ _ _ a’’a”b YJbo
Coa myn, (Fab Tab ) do
mana a 7:1 afbl
+ myn,t,, dv [vfbl + E; dv (129)

where F,, is given by (123). In the terms depending on f,,, the second term in (125)

and the expression in (126) have been neglected, since they are generally smaller by
('na/mb)l/z'

The linearized Fokker - Planck collision operators. In transport theory applications,
the Fokker-Planck collision terms (21) are usually linearized by assuming the
distribution functions to be close to Maxwellians, as in (117)—(119). Substituting

(117) and a similar expression for f, into (21), neglecting terms quadratic in f,; and
f3) gives

C'ab[fa()+fal’fb0+fhl]:Cub[fu07fb0]+c4ﬁ) (]30)

where the first term on the right-hand side is zero if both Maxwellians have the same
lemperature,
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The second term on the right-hand side of (130) is the linearized collision operator
€ se

(131)
CaIbECah[fal»fb0]+cub[fao-fbl]
) u
= ':;_:[j'éa;'fd%'fao(”)fbo(v’)(; - 5;—3)
| f f ’ . 1
‘"—’ﬂ—ii’ﬁ'—+(—'ﬁﬂ(iul(v)+fbl(v'))(%——T—)] (132)
Ym, v m, v 2 b i

f i the right-hand side of (131) is
fi= df, = f+0- The first term on ht : '
WIlletrf? fa]n—liz{‘flgpfggaizr Q::‘Lingfhéﬁ ;fl, while the second term 1s an mtltlz.gr'aln;)p\;irtahto;
thilnger(:n fy- The differential operator represe;ls t(kile_ eig::ts ao[; ecc:l Sns{n;)e i
- 1 1 and is
ian background of particles of species ¢ oltision
lc:/:)z::xr;i)lil?: the tcgst-particle form of the Fokker—Planck ;ql:‘duoq;,(gt?l)é ’1‘;};; rllr{) ﬁion
i f the perturbation i ‘
131) represents the effect o 3 buso
?Pef:{m; flonr t(he “)fielcf particles” of species b. Iq t{anspor.t theory apillc;llin; ( am«?l
ane lg only when 7, =T,. Only if m,/m, < 1isit pernus;nble t‘obta ct ,r,l arcu.more
ljlgr?ethe sn):all massfrati; approximations given in the previous subsectio
O eatined he same properties as the nonlinear
i i lision operator has most of the same p ‘ A
gh?olrllntzzirx*:lze;i::n in the Eeclion on the Fokker—Planck equation. These properties
collisi ,
ite often in transport theory. . . -
amSiunS:ff1 ((llng) still has the form (18), we still have particle conservation:

(133)
fd% ct=0.

Y i I laccn] nts
IJO‘C lhal lhe lntcgrand mn (]32) Slmpl Changes Slgn upon maklng [hc Cp [

© b L dl VN lhe m()mentum and energy conse ation p Opertles a

a 3 v 1Y ) re tllelei()]e

obtained in the same way as before:

(134)
[ $ompoCh,+ [dompCl,=0
2 135
fd’u moo” ct +fd30 m;v Cpa=0 (139
2 a

If T =T,, the H-theorem proof can be used to show the following: the linearized
a” th ;
collision operator is zero,

E Calb =0
b
if and only if f,, has the form
fal =ma(aa+ﬁ'v+vz/2)fu0 - N e
(and similarly for f,,). This is the perturbation of a Maxwellian distributi

due to perturbations in density, mean velocity,
first order in these perturbations.

(136)

(137)

g . are spatially local,

and temperature, Taylor expanded to %
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One further property of the linearized Fokker-Planck collision operators is of
interest: self-adjointness. For the like-species operator, we have

_/-d}vg‘alculujal =/djvfalcu€1g~ul (138)
while for the unlike-species operators, this property takes the form

z /djvg‘ulcu‘;;(fal;f‘hl):' >z fdjufulcui(gal;g‘hl)‘ (139)

a, b a,b

These properties are easily demonstrated, starting from (132) with T, =T,
ing by parts, and symmetrizing with respect to the integration variable
species subscripts, as in the section on the H-theorem.,

Similarly, it can be shown that the differential and inte
separately self-adjoint in the [ollowing sense:

/djvgalcub[fal’fbﬂl=fd30]alcuh[gul’fh0] (]40)

. integrat-
s and the

gral operators in (131) are

fdavgulcub[fa()’fbl]=/d30]blcba[fb()’gull' (141)

These relations are used in the transport theory applications described in the section
on ion parallel transport.

1.5.3. Classical transport processes

Spatial transport due to velocity-space diffusi

on in the presence of spatial
gradients in the plasma, as well as electric and

magnetic fields, is now considered.

"The Fokker—-Planck equation, including these terms, is

1, dv

9
~+v-\7fu+i(5+£xl})- A Y, (142)
at ' ¢ o

where E and B are the electric and magnetic fields, and C,, is the Fokker—Planck
collision term. The collision term is assumed to be still given by (14), even when
these gradients and fields are present.

Among the phenomena described by (142) are classical transport processes, which

i.e. the fluxes of particles and energy are due to forces at
approximately the same spatial location. In order for this situation to occur, the
plasma must be collision dominated, with mean free paths much shorter than the
gradient length in the direction of the magnetic field. In addition, either the mean
free path or the mean gyroradius must be much shorter than the gradient lengths in
the directions perpendicular to the magnetic field. The
can then be affected only by the forces within a mean free path or a gyroradius. It is
assumed here that the mean gyroradius is shorter that the mean free path, and is the
particle localization distance perpendicular to the magnetic field.

particles near a given point
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When the transport processes are local, the plasma may be considered to be made
up of ‘many approximately closed subsystems, with slightly different densities, mean
velocities and temperatures. Charged-particle collisions tend to force each subsystem
to local thermodynamic equilibrium, with the subsystem entropies being maximized,
subject to the constraints imposed by particle, momentum and energy conservation.
Because of the small differences between subsystems, the velocity distributions for
these subsystems depart slightly from Maxwellians. For example, the distribution of
the velocity component in the direction of the temperature gradient is skewed
somewhat in the direction of motion of those particles coming from the hotter
region. As a result, there are small fluxes of particles, momentum and energy
between subsystems, which are approximately linear in the thermodynamic forces
(e.g. the density and temperature gradients). The resulting entropy fluxes between
subsystems then make the plasma as a whole tend towards a state of global thermal
equilibrium. Because of the boundary conditions and other external constraints, such
as applied electromotive forces, the plasma generally is not able to reach this
equilibrium state but remains in a nonequilibrium steady state. The charged particles
and energy are lost from the plasma at the same rate that they are produced in the
plasma in this steady state. It is the goal of transport theory to calculate these loss
rates, assuming they are due to Coulomb collisions.

Basic expansion procedure

The assumed smallness of the mean free path and the mean gyroradius is
exploited mathematically by using a procedure very similar to the Chapman-Enskog
method in the kinetic theory of gases (Chapman and Cowling, 1952). The distribu-
tion functions are expanded in powers of the small parameter e, where

e=\/ly~p/l, ~ E/Ep.

Here A is the mean free path, p is the mean gyroradius, /, and /, are the parallel and
perpendicular gradient lengths, E is the electric field, and Ep, is the Dreicer field,
defined by (111). Thus,

fo=fotfatfat (143)

where the numerical subscript denotes the power of e In the Fokker—Planck
equation, (142), the gradient and electric field terms are considered to be first order
in ¢, while the time derivative is second order in ¢, compared with the magnetic field
and collision terms, which are considered to be comparable. The zeroth-order terms

are

d
0 25 g 20 2 5l fuos o). (144)
b

m, ¢

That the only solutions of this equation are Maxwellians is easily demonstrated, as
follows. Multiplying by In f,,, integrating over all velocity, and summing over a
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yields:

Y [d%Inf,C,=0
/ Cun (145)

which, according to (38), implies that [0 has the form
foo = (na/7*"0} Jexp( = v?/02)

where (146)

v, =2T,/m, (147)
147

d T =
:}r:oseg to7|; for all 4. The common mean velocity of all particle species has been
¢ zero. Although all of the temperatures are required to be equal at this

pOlnl, they Wl“ continue to be dlSlul ulshed b S])CCICS SulDSCIlptS (V) lﬁ €r conveni-

The first-order terms from (142) give

’Z[Cuh(ful'fb0)+Cab(qu’fbl)]_"Qavxr‘i.%
; v
_ vp, e, v’ 5\ vvT
== v. ——— —— — e — Mu
[(pa TaEHuﬂz 2) T,

where 2 = i .

magnet% fiefé‘Ba/n ’gaf 1_5 theT gyrofrequeqcy, A= B/B is a unit vector tangent to the
system of i I l.hc pamz}l pressure of species a. Equation (148)is a
y of linear integrodifferential equations for the functions f, d th i
mathematical problem in classical transport is to solve these e o e (1o primary

. ! : quations.
Once the solution of (148) is obtained, the first-order particle flux, defined by
nau, =/d3vval,

fuo (148)

(149)

may be calculated. The heat flux is defined as the flux o

transported by mass motion: Fenergy in excess of that

= 3vlm v—u 2 -A
9.= [dogm(v—u,) (o= u,)f,. (150)

By usiqg (143) and retaining the lowest-
¢, the first-order heat flux is obtained:

1 5
g, = d3v(—muvz——T)
[d%l5 =2ACn (151)

order nonzero terms, which are first order in

Expl €ss10ns may be Obtalned 101‘ the C()Illp()llellt Ot the pal thlC flux pe] pelldlculal
to ‘he lIlagllCllC fle]d’ b) Inu“'lpl) lng (] |8) b) la" a“d lnteglaung over all eloc"'lES

e n.e,
Zb:/ U’"av[cub(fal’fbo)_‘_Cab(-fao’fbl)]+ c uyXB=vp,—ne,E.

(152)
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By using the definition of the first-order friction force,

r
Fab=j dBDnluv[Cah(ful‘/I;())+Cuh(fu()’ fbl)] (153)
and solving for the flux,
) c c
"uuul:nu;EXB-*_Z—B?_sz(qu— Z Fa,)). (154)

h(=ua)

Note that the friction force is not a known quantity since it can only be calculated
after (148) has been solved for /) and /.

A similar expression for the perpendicular heat flux is obtained by multiplying
(148) by m v(v*/v? —5/2), integrating over all velocities, and solving for q,,, :

5 ¢p cT,
=L 4 BX VT, +—%52,G,,XB (155
9,1 2 L’uBz C‘aB' 2’): h )
where the heat friction vector is defined by
vl 5
G,y = fd%(;i ) 'nuu[cuh(fal o)+ Can oo fhl)]- (156)

Equation (155), like (154), will be used in the next subsection to obtain expressions
for the fluxes in terms of known quantities. In their present form, these equations
can be used to indicate the physical origins of the fluxes.

In (154), the first term is due to the EX B drift motion of the particle guiding
centers. The second term is due to the diamagnetism of the plasma, which has its
microscopic origin in the gyration of the particles around their guiding centers. The
third term is the collisional transport flux perpendicular to the magnetic ficld. The
transport is in a direction perpendicular to the total friction force. Note that, since
F,, =0, like-species collisions make no direct contribution to the transport; thus the
b = a term is omitted in (154). If the particle flux were calculated to third order in
the expansion parameter &, there would be a contribution from like-species colli-
sions, in the form of viscous-stress terms (Simon, 1955; Kaufman, 1958). These are
beyond the scope of the present article.

Equation (154) may be multiplied by e, and summed over species to obtain the
perpendicular current density:

Jo=n.eu,, = -bC—ZB X ¢P (157)

where
P=3.p,

is the total pressure. The friction terms have cancelled out, because of momentum
conservation, (25). Thus, the collisional transport is ambipolar and gives rise to no
net current density. Also, the electric field terms have cancelled because it has been
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assumed that the plasma is electrically neutral:
Yone,=0. (158)
Note also that the component of (152) parallel to the magnetic field is
A) F,=hrvp — AE
% R P, —n e, fi-E. (159)

Summing over all species and using mo .
ment
neutrality (158), gives & um conservation (25), and charge

AP =0.
(160)

Equations (157) and (16 i ST
equation (157) and (160) are equivalent to the MHD equilibrium force-balance

(1/¢)jX B= wP. (161)

I(ril (155), the firs.t term is the heat flux due to particles gyrating around their
ﬁil ing ?entcr]sl,‘ Yvhjle the second term is the collisional heat transport. Note that
e-spectes collisions, as well as unlike-species collisi contri ir
pae-spec p 1ons, contribute directly to the

Returning to the expansion of (142) in powers of &: the second-order terms give

L [Con e )+ Con s o)+ o )] = Ry e L
v

[

a0 e, . 9/,
=240 4 o g p.al
o ' ° Via ™t m E dov ’

a

(162)

g ]g N Cqual g € the pal Cle-C()l 1S€rv-
I“le ratir ll“ 10N OVer a“ VC]OCIUCS alld mdkll’l us Of
y t1

on,/ot+ ve(n,u,)=0 (163)

where n,u, is the first-order particle flux, defin i
re n,u, | . R ed by (149). First multiplying (162
by 3m 0" and then integrating over velocity yields the energy-balance eguyatiin( )
J

3 5
at (Enun)-{- V.(qal + .2—’1(17::"(1]) = nu(’a"ul.E + Z(Qab + "a. ab) (164)
b

_where g, is the first-order heat flux defined by (151) and Q,, is the energy-transfer

rate dcfxr'led by (28). Note that Q,, is not zero, because of the contributions from f,
and f,,, in (162). In order to eliminate these unknown contributions, we sum (162;
over species. We now also make use of the equality, for all s‘pecies of th
temperatures contained in the Maxwellian zero-order distributions, (146) T’hus )

3
(3/81)(5l17‘)+ v-Q=jE (165)

where n =X n, is the total number density, T is the common temperature of all
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particle species, Q is the energy flux defined by

0= Z:(qal +=Tn,u, ) (166)
and j is the current density:
]_Zna alar- (167)

The collisional conservation of energy, (33), has been used to eliminate the colli-
sional terms.

The goal of transport theory is to obtain expressions for the particle and heat
fluxes in terms of gradients of the number densities, n,, and the temperature T, so
that (163) and (165) might then be used to determine the time and space dependence
of the densities and the temperature.

The strong magnetic field limit

Transport in MHD equilibrium systems has been considered. The most important
examples of such systems are strongly magnetized, in the sense that

(168)

This is the strong magnetic field limit, in which the particle gyration time 27/ Q,1s
much shorter than the mean collision time 7,,, and consequently the mean gyroradxus
p, =v,/8, is much smaller than the mean free path, A, =0T,

In order to investigate this limit, use will be made of the cylindrical velocity
coordinates vy, v, , { defined by

Q1,,> 1.

o=v,fi+ v, (§,cosy +é;sin{) = vyfi + v, (169)

where A = B/B is a unit vector tangent to the magnetic field, and é,, é, are two other
mutually perpendicular unit vectors. The first-order distribution function is written
as the sum of two terms;

fal=jal+]al (170)
where f,, is the average over the gyration angle

- d¢

fal = Efal (171)
The average over { of (148) is

Z [Cab(fal’fb0)+cab(fa0’fbl)]

b
ViPa e, l_)_z_ _ _§_ VIITa
= "u[( I ?‘:Eu)J“ ( v 2T, Jao
(172)

where v, and E are the parallel (to B) components of the gradient and electric
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field, respectively. This equation determines the transport parallel to the magnetic
field, and will be considered in the section on parallel transport. Subtracting (172)
from (148) gives

. d
E1Con s foo) + Con (foor T) ]+ @3¢
o[ ) 53] 5 )

where v, is defined by (169). :
The assumption expressed by (168) is now used and f,, is expanded in powers of

(‘Qa d{l) l:
Ta=IP+I0+ - (174)
In the zeroth-order version of (173), the collision terms are absent, so it may be
integrated immediately, giving
VP, e, v’ 51 VT,
(m nE%(a 2)7;

-

ll

(-
1 9

a

Jao- (175)

a

Substituting (175) into (149) gives the first two terms in (154). Substituting into (151)
gives the first term of (155). In order to obtain the collisional terms in (154) and
(155), the friction force F,, and the heat friction vector G,, must be evaluated. This
can be done by approximating the first-order distribution function, using (175).
Note that this expression, which is zeroth order in the collision frequency, is
sufficient to obtain the collisional fluxes to first order, by using (154) and (155) in
which the collision terms appear explicitly in F,, and G, p- Thus, it is not necessary to
calculate £,

By substituting (175) (and the similar expression for f,,) into (153), the integrals

can be carried out. Using (132) for C/, with T, =T, =T gives
m,n C . Vpb Vpa 3 (1_ zanlu/zbmb)
=24 " 5ix - = T]|. 176
SN eB" (zb”b zng 2z, (l+m,/my) v (176)
Hence, by substituting into (154),
nuuLI)E —Cﬁx E Fab
“oe,B b(=a)
2
n,m,c 4z, Vv V.P, 3(l=-zm,/z,m
= e Y Tabl( LPy VP E( /2pMp) VLT).
eaB b(=a) Zp Ny ng (1+ma/mb)

(177)
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Similar calculations enable G,,, defined by (156), to be evaluated and then (155)

1ves
& —cT

§=— Aixy. G,
a b
ngmT I EI RN
elB* % T+ m,/my) |2\ n, Zp My

(178)

[15 m,\* m, 13 21 m,z, v, T }
-1= +4—2 4 = - = .
2 (m:.) m, 4 4 mz, | (1+m,/m,)

The individual terms in the summations in (177) and (178) may be interpreted in
terms of random walks with step size p, =v,/,, the mean gyroradius, taken at
intervals of 7,,, the momentum transfer collision time. This is the time for an
average particle to diffuse in velocity through an angle of roughly 90° if there were
no magnetic field. In a strong magnetic field, the velocity diffusion manifests itself
through diffusion of the position of the guiding center, r, = r +(v X A)/Q,. where r
and o are the position and velocity of the particle itself. Thus, the diffusion
coefficient, the factor multiplying vn, —(z,n,/z,n,) Vn, in (177), is

D =307/ up-

The pressure gradients appear in (177) in those particular combinations because
the collisional flux is proportional to the magnitude of the friction force, which in
turn depends on the difference in the zeroth-order mean velocities of the two species
involved:

ul —ul = ﬁ—z'B X(
In the absence of a temperature gradient, the diffusion due to collisions between two
species a and b would stop if their densities were related according to

vy Vpa) (179)

ebnb euna

nie/nir = constant,

since the zeroth-order mean velocities would be equal in that case. For a simple
plasma, with z, = — 1 for electrons, this cannot occur unless the electron density is
constant, assuming the plasma to be neutral. If a and b are two ionic species, this
can occur if the more highly-charged species (the “‘impurity”) is more highly
concentrated in the center of the plasma than the other ionic species. If this relation
between the density gradients is not satisfied, then diffusion proceeds in such a
direction as 1o satisfy it. This generally means, for the hypothetical case of only one
impurity species, that impurities diffuse into the plasma.

The appearance of the temperature gradient in (177), called the Nernst cffect, is
due to the fact that temperature gradients give rise to friction forces, as a result of
the dependence of the collision frequency on particle energy. The contributions to
the momentum transfer from neighboring regions of different temperature are
therefore different, leaving a net momentum transfer, and hence a net particle flux.
For example, if the density gradients were zero then the lighter of the two species
would diffuse towards the higher-temperature region as a result of collisions between

O

1.5. Collisional transport in plusma 179

the species, assuming
m,/m,<z, /7, <1.

The direction of this thermal diffusi

[ iffusion may be reversed, how i i

ties are not satisfied. ’ ever 1 these
A(xj . similar cffect, the Ettingshausen® effect, is the appearance of the pressure

gra 1e111t terrr.ls in (178) for the heat flux. The faster electrons, for example, diffuse

;r;o;eﬂs owlg' }1]r1 tthf: pr}fsecrllce of pressure gradients than the slower ones. This appears

ux of heat in the direction opposite to the particl
e o 1 e p e flux when the temperature

The results obtained so far for the 1
. particle and heat fl
marized as follows. The particle flux is xes may now be sum-

nequali-

= © 1 N
nou,=nul) +n,ul) +n iu,

" (180)

where

nu®=n,~~ExB+—E
=, —Bx vp, (181)

a

ay o s -
nuu‘i; xts1 given by (177), and u, is still to be determined. The first two terms in (180)
are both first order in the small gyroradius parameter e=p//, ; the first is zeroth

order in (2,7,.)7!, the ratio of collision f
aTaa) s requency to i
second term is first order in (2,7,,)~'. The he:?t ﬂuxyis Byroffeaency, whilp the

9.=952 +q{) +iq,, (182)

where

O _ 3 _Pa_

al 9
< e,B?

B x
vT,. (183)

a o s
9.1 1s given by (178), and q,, is still to be determi I m
fei o Bhuen Dy (178 A " ' etermined. The parallel co ponents of

nu, =na(n,u,)

‘ (184)
qa[]E".qul (185)
may be calculated, once the solution of (172) has been obtained for f, '
N, = /d3v o, fa (186)
a1 , 5 -
qan—/dlv(—z-mav“—ET;)v”fu,. (187)

ilz:her tﬂan continue in complete generality regarding numbers and masses of
pecies, (ti e special case of a Plasma with only one ionic species will be considered
next, and a plasma with multiple ionic species will be considered later.
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Transport in a simple plasma

The small mass-ratio limit. A simple plasma in which there are only two particle
species, the electrons and one kind of ion, is now considered. This reduces the
number of parameters such as charge ratios. It also makes possible the simplification
of the unlike-species collision operators, using the smallness of the mass ratio
m, /m;, as described in the section on small mass-ratio approximations. Since the
basic expansion procedure described in the section on basic expansion procedure is
somewhat different in this special case, it will now be reconsidered.

The electron version of (144) contains, on the right-hand side, the electron—ion
collision term C,,. This is to be approximated by using (116), neglecting corrections
of order m,/m;. In the ion version of (149), ihe ion—electron collision term, C,., 1S
to be neglected entirely. The conclusion reached above, that the zeroth-order
distributions are Maxwellians with the same mean velocity, still holds, but now
unequal temperatures are allowed: T, = T;. The analysis of the first-order equations
(148) is carried out just as in the sections on basic expansion procedure and the
strong magnetic field limit, except that ¢! is approximated by (121) while clis
neglected, except in (172) governing parallel transport, to be discussed in the next
subsection. In the second-order equations (162), the O(m, /m;) correction to C, is
retained in the electron equation, and C is retained in the ion equation. In both of
these terms, only the zeroth-order Maxwellians are used, and only the energy
moments are needed; these are given by (52), which becomes

(188)

for ions, and, from (31),

}Qci = —Qic+("i - uc).Fc
for electrons. Both electron and ion versions of (164) are needed, since there are now

two temperatures to be determined.
The strong magnetic field limit of perpendicular transport is obtained just as in
the section the strong magnetic field limit; the perpendicular electron flux is

(189)

c . (V.LP_%chJ.Te)
CEEXH— m Q21

e“elei

—C

s (190)

nu., = AX Vp. +n

where P = p, + p, is the total pressure, while the perpendicular ion flux is

( v, P _%nch.Te)

Py
me‘QeTcizi

(191)

[ 4 A
nu;, =z—e§‘n>< Vpi+niEE><n—

1

The condition of charge neutrality, n. = z;n;, has been used in both of these
expressions. The perpendicular electron heat flux is

S Lo o4 — Lo
2neeB" Vi m §221,

el el

9er = 4 z.

1

2

[2 VLP—-(E+@—)nCVJ_TC] (192)
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while the perpendicular ion heat flux is

o= o[ S Jix om - LT

1
2
m QT

(193)

The electron-ion and ion-ion collision ti
_ al times, 7,; and T, are defined by (56) and
(54).h"]l"he 1on collisional hezit flux exceeds the corresponding electron hgat( ﬂl.)lx by
;o;lgv; 2 (fiacitir (;i /m.)"/?, although the diamagnetic terms, proportional to
.and A " i
ity VT, are comparable (assuming T, /T; and Z; to be comparable to
Note that it is the electron tem i i
- that perature T, which appears in (190) and (192); th
approximation for the electron-ion collision term given by (121) does not(expii’cid;
<r:otnt.amd the ion temperature. In deriving (193), only the ion—ion collision term was
dcj.fzfnn; » 80 it is the ion temperature which appears. In (191), the collisional
ifusion term was evaluated by using momentum conservation, in the form F. =
— K, and the result for the electron diffusion, (190). -

Parallel transporr. We first consider the electron version of (172)

L3 Wk
2 2] T,

€

2o.u,
Rf, + i, ) ViPe | e
Lo Joo | =0l | A Jeo:
(194)

In this section, as well as the following sections, the overbar, which denotes th
al\ller'age over par.tlclc gyra_tion angle, will be omitted for notatio’nal simplicity ;inc:
t fi‘. ion dlSlI‘l!)U[lOI‘l funct.lor} /i enters the equation only through the parallei mean
velocity Uy, it can be eliminated by transforming to a refererce frame in which
u;; = 0. This is equivalent to making the transformation . n e

2
Cccfcl + Vei

L= 2oyuy
el 2 feo t 8er- (195)
Alter defining the velocity-independent forces
4= 2P e p
b (196)
4= vyl
T, (197)
the equation for g,, can be written as
’ _ 5
Ce8er + ¥5L 8 ~v"[A,+(02/vg—§)A2]feo (198)

where

ralo)=neale/o (199)
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and where
L3-8 (200)
B_—i ap'(l u )ap"

i i : : ric
since the distribution functions which determine parallel Frdn;porl areus;nézlsrtegs
ic fi irection. We note that the solution for g, m s
about the magnetic field dlrectxon.. . | Xpress
this function as a linear combination of A, and A,, since that is the form

right-hand side of (198). The parallel current density,

201)
jucE—nce(ue“—ui“): - e/d3v Uy 8e1 (
and the parallel electron heat flux,
. (202)
Wl -2
qe||=Tede(vZ_ 2)Ullgcl
can be calculated from g,,, and are also linear combinations of A, and A4,:
203
j"c/e:("cTcTci/mc)(}\llAl+)\12A2) (203)
(204)

- qcu/Tc = ("e'I::Tci/"lc)(AﬂAl + >‘22A2)-

Another way of expressing these results can be found as fo?lo_ws. By taklr(lighthi

appropriate moments of (194), the parallel components of the friction force and hea
friction vector are given by

FCII

Geu =3n, VuTe =3p.A,-

(205)
(206)

= Vnpc + nceE" = pcAl

By solving the transport relations (203) and (204) for 4, and A,, the following

inverse transport relations are found:

' (207)
Fe||= (me/Tci)(Fl|J||c/e +P‘|2qcn/Tc)
’ 208)
ch=—(%%\)(l‘zduc/e+P‘zzqcn/Tc) {
where
(209)
pu=An/4, ti2=Ap/A4, (210)
F21=}‘2|/A’ P22=}‘1|/A
with

A=NAp—Antp.

Equation (194) was solved numerically by Spitzer and Hamfl (1953)1. Tzalzlel‘lngnizs
their results for the A, as well as the p,, derived from them, for z; =1, 2, 4, ¢ .

1 calculation, as described in the

ined by a variationa
These results can also be obtai y B ety

section on transport in a plasma with multiple ion species. The v

R

T

——m———
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Table 1
Spitzer—-Harm transport cocfficients
i A Ap(=Ay) Ay i P2 193]
I 1.975 1.389 4.174 0.661 0.220 0.313
2 2.320 2,107 6.830 0.599 0.185 0.203
4 2.665 2910 10.15 0.546 0.157 0.143
16 3132 4216 16.31 0.490 0.127 0.094
© 3.395 5.093 21.22 0.460 0.110 0.074

plasma, in which z; — o0, can be obtained easily by solving (194) analytically,
neglecting the term Cl. g,

The equality of A, and A,,, and consequently of g, and p,,, is an example of a
general result from irreversible thermodynamics, the Onsager symmetry relations (de
Groot and Mazur, 1962). Such relations exist when the decay of small fluctuations is
governed by the macroscopic equations, including the appropriate transport
processes, and when the tensor correlation function for these fluctuations has a
symmetry property as a result of time-reversal invariance of the microscopic equa-
tions of motion. Microscopic reversibility manifests itself here through the self-
adjointness of the collision operators, which is used to prove the Onsager relations
directly, in the next subsection.

The existence of nonzero cross terms A,, A,, in the transport relations is called
the thermoelectric effect, and is due to the velocity dependence of the collision

frequency. To clarify the origin of this effect, the transport relations are rewritten in
the form of a generalized Ohm’s law,

V\Pe .

E1’+7€T=j"c/0"—(a/€)V"Tc (2“)
and a generalized Fourier’s law,

Qey = — “chne/‘—’ - (}‘22 - AZIZ/)\H)(chci/me) V||Te (212)
where the electrical conductivity is

o=\ ne’r;/m, (213)
and the thermoelectric coefficient is

a=Ap/Ay. (214)

The last term in (211) is analogous to the Seebeck effect in metals, the origin of
the thermal EMF in thermocouples. Even in the absence of any current, when there is
a temperature gradient there is a net frictional force because the electrons coming
from one direction have higher energies, and hence lower collision rates, than those
coming from the other direction. The first term in (212) is analogous to the Peltier
effect in metals. Even in the absence of a temperature gradient, when there is
electrical current heat flows because of the skewed velocity distribution which results
from the velocity dependence of the collision frequency.
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The thermal conductivity,
Kje = (>‘22_>‘212/)\11)(Pc7ei/me) (215)

is positive. This follows from the negative-definite property of the collision opera-
tors, and corresponds to the positive-definite nature of entropy production, as will
be demonstrated in the next subsection. The parallel electron thermal conductivity
K. exceeds the corresponding perpendicular conductivity, from (178), by roughly a
factor (£2,7.)%

The ion version of (172) is now considered. The linearized ion—electron collision
term, given by (129), must be retained, but in a simplificd form, including only the
first term, proportional to F,. This is because the perturbation in the distribution
functions, and the mean velocities, for parallel transport, satisfy

ial/faO - uu“/va - >\ax/lu (216)

where A, = v,7,, is roughly comparable for both electrons and ions. The ion-elec-
tron term can be neglected for perpendicular transport because

jel/ch - pc/I.L < pi/[_L
where p, and p; are the mean gyroradii of electrons and ions. By using (152), the
friction term cancels with the ion pressure gradient and electric field terms, so that
the equation for f;; becomes
2 v T
2y v é_ i
Ciifil_vll(uz 2) T,

i

fo. (217)

This equation has been solved by Braginskii (1957) using the moment method. By
expanding the distribution function in Sonine polynomials, substituting into the
equation, and multiplying it by Sonine polynomials and integrating, enough moment
equations are generated to determine the coefficients in the distribution function.
Braginskii’s result for the parallel ion heat flux is

9= -3.91(n; Ty /my) v Ti. (218)

The ion parallel thermal conductivity is smaller than the electron value by roughly a
factor (m,/m;)/*.

Note that the solution obtained for f;, is not unique, since another solution can be
obtained from it by adding a term (ZUII/uf)Au“fio, corresponding to a change in the
mean parallel velocity by Au,. That the ion mean velocity u;, is not determined is not
an artifact of the small mass-ratio approximations used, but is consistent with a
more general result. The center-of-mass mean velocity, in general, is not determined
by the physics which has been included up to this point, which gives no net parallel
force on the (neutral) plasma. By carrying out the expansion in powers of € to higher
order, an equation determining the time rate of change of the center-of-mass velocity
would be obtained, including the effects of viscosity. These are small effects, because
of the assumption which has been made in this article that the velocities themselves
are small, and due to transport in MHD equilibrium systems. Since these small
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effects i i
are complicated by higher-order heat conduction effects, they will not be

COIlSldCICd m [hlS ar . Ced, the dO not

ITI"II;er'l thsager. rel(;:ions and the variational principle. The Onsager symmetry relation
loned 1n the previous subsection, follow f; joi .
e on. he lion, w from the self-adjointness of the
ar perators stated in the section on the lineari
: rized Fokker—Pl
;cl)tlilg;or:thseyrrz;l;r; Forla .51m1;\le plasma, the A, ; which appear in (203) and (21121(1)21;
. ry relation = A, Thi i iati
expressions for the A, which wil]l2 now2|bc dcrsivreill?“on pollows from the variational

The solution of (198) can be expressed as a linear combination

terms, 4, and 4,: ©f the driving

ga=MmA+h,4, (219)

where 4, and 4, are given by (196) and (197). The functions k, and h, must be

solutions of the equations

l :
Coti trglhy =0,/

[ (220)

Gl +Vciﬁh2=v"(uz/uf—%)feo. (221)
These equations are the Euler equations for the variational principles

8(s,—2P;) =0, j=12

' (222)

where the functionals §;; and P;; are defined by

S, = [doh,(C2h, +v,eh,) (223)
and

P, = [dvid, (224)
where

dy=vf0 (225)

d,= Un(vz/vcz_%)feo- (226)

The § i 1
.runcﬁons"ﬂmcli?ll 'herg 'means the first variation, i.e. the difference between th
ontonal ¢ aluate at h+8h and.at h, neglecting terms quadratic in 8k The
alues (in this case the maximal values) of the variational quantities ;II'C )
S,~2P =—p
1) ]
‘ i I (227)
which follows from (220) and (221).

I . e

" z;szel )vanz'ltlona_l prmc;ples can'be used to obtain approximate solutions to (220

nd (22 th, us:jng tna.l functions which depend linearly on parameters. These para )
en determined by the solution of linear algebraic equations (Robi:s)(‘)n‘ ::;
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Bernstein, 1962). For example, the simple trial function

h,=v,(av+ b?) f.o

containing only two parameters, can be used to calculate a value for A which
differs by less than one per cent from the Spitzer—Harm value, for z, = 1. The good
accuracy thus obtained is due to the fact that the error in a variational quantity is
quadratic in the error in the trial function. Note that a direct calculation of the
transport coefficient, from the definition of the flux (201), does not give good
accuracy, even when a variationally-determined trial function is used.
Having obtained solutions to (220) and (221), note that the following is also a
variational principle:
S(Sll—Pll_P2|)=0 (228)
where S,,, Py, and P, are again defined by (223) and (224). When h is varied with

h, held fixed, this gives (221) as the Euler equation, while varying /1, with k| held
fixed yields (220). By using the equation for /,, the extremal value of the variational

quantity is found to be
Slz'Plz—Pm:—le- (229)

Note, however, that Sy, = S,;, from the self-adjointness of CZ, stated in the section
on the linearized Fokker—Planck collision operators-and of the operator £, defined
by (200), which is easily demonstrated. Thus, using the equation for A, the extremal
value is also given by

Slz'Plz"Pu:Szl_Plz"le:"Plz (230)
and so
Py =Py, (231)

The relation between the P,; and the A,;» found by substituting (219) into (201)
and (202), and comparing with (203) and (204), is

Pij= __(ne’I::Tci/mc)Alj (232)
and thus
A=Ay (233)

These variational principles are directly related to the rate of entropy production
(37). By retaining only terms linear in the expansion parameter ¢ in (37), and using
the small mass-ratio approximation for the electron—ion collision term (121), the
electron entropy production rate is found to be given by

Sc == fdJD g‘cl[ccf;gcl + Veiegd] (234) :
where g, is defined by (195); it is positive-definite:
S.20 (239)

¢
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with equality only if g., = 0. By substituting (219) this becomes

Sc’-'——ZS’ AIA =20
PR (236)

where S, is defined b inc
ij y (223). Since the ext .
5, = P, using also (232), extremal values of the S;; are given by

S.=(pri/m)YN, A4, >0
3 p ijtifty (237)
Thus, the matrix of trans ici i mm
\ port coefficients A, ; is both positive-defini i
: : ,, s - t
It follows that the diagonal terms and the Jclcrminant are positivc'e and symmetrc.

An>0, X;»>0,  AjAu—A,>0. (238)

Transport in a plasma with multiple ion species

Tra . . .
. Cr;f};;?(;;rmda I\Il)Ilasmz; with an arbitrary number of ion species, plus electrons, is
ed. More than one ion species may be i ; ,
e presenee of mparciinan ‘may be present in a plasma because of
' , or because there is intentionall i i i
as in a fusion reactor. The ratios s ol s e T
. of the masses of eve i i i
x | : . ry pair of ion species, m_/m,,
v lube new parameters in the problem, which will be allowed to have any valﬁe{ Alil
e] txe ton species will be assumed to have the same temperature, 7. =T but' the
ectron temperature may be different: 7, = T. General formulas wer‘:: giv’cn above

for perpendicular transport in a st ic fi
wor perpendicular p strong magnetic field. Thus, only parallel transport

Electron parallel transport. The tra

/ . nsport problem for the electrons
to that for a simple plasma. By using (121) with the definition ean be reduced
2

) = n,z;
ea = 3 Vei
Lon .z (239)
where
Vei = (37r1/2/4)'rci_‘(v,:/v)3 (240
with )
L _4_ ntrtzc[r
N F CCI (241)
and
Zetr = Z"cZZ/Z"czca (242)
20,u
Ceﬁﬁ:|+Vci(Efe.+ uzcrrfc — v, ViPe e ey 23_2 viTe
e T, 02 2 T ch
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where
(244)
Uegt = Enczfucll/znczz'
c (o

hat

NoteXt: g o
nz,=n,
c

by charge neutrality. By making the substitution

(246)
fcl = (2v|luc[f/vc2)fe0 + 8el
(198) is again obtained for g, with v, now defined by (240). Thus, the electron
current density

Jey =" efd3u Vi 8e1

and the electron heat flux

02 5
3 =
qc||=chdUU||(uz ) 8ei

. . L n
are given by the transport relations (20:3) and (204) in which ; is given by (2 )
Note that the total friction force is given, from (194), by

20 Uegg 3 247)
Fcll = fd:;vmcvllvci(ﬁfel + —'ﬁ;—fco\) = fd vmevllveiegel' (

€

It is given in terms of the electron current densit){ and the electron healt] ﬂu; bz :,1:;
inverie transport relation (207), in which 7, is given by (241). Note that j

equal to the total current density:

(248)
=" efd’v opfa + egnczcuc".

The ion contribution is

Ju=Ja— Jey=erncz (g = ter)
[od

where u, is defined by (244).

Ion parallel transport. The ion transport problem can be treated in a fairly general

way also. For ion species a the first-order kinetic equation is

E[Cac(fal7fc0)+cac(fa0’ fcl)]+ Cale

Vibs _ e 3|2l / (250)
=o\—— ~Fh|t\ 2772 1 |0
. Pa T v,

(249)
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Using the same reasoning as in the section on parallel transport, the ion-electron
collision terms may be approximated by

Ca€ = -(F;a"/pa)vufaO: (Facu/Pa)vufa()- (251)
From (152), the pressure gradient and electric field terms are given by
ViPa e,
o Th= (ZFabn + Faen)/Pa- (252)
a b

By making this replacement in (250), the terms proportional to Fe; cancel, and the
equation becomes

F 2 v, T
?[Cac(fal’/c0)+Cac(faO’fcl)]=v|| _p—:+(-z_2—%)_—7l-l—_ faO (253)
where
F,= Zan- (254)

Multiplying (253) by m,v,(v>/v? - 3) and integrating over velocity gives for the
parallel heat friction for species a:

(3 v? 5
Gu =/d Umgv”(—-; - 5)2 [Cat(fal’fco)+Cac(faO’fcl)] (255)
[ ¢
=§naV"T.

F, and G, will first be considered to be given quantities, so the the uy and q,, are
to be determined in terms of them. An approximate solution of (253) (which consists

of one equation for each ion species) can be found with the help of the variational
principle

8(S-2P)=0
where
§= bedjv ‘al[Cab(fal’fb0)+Cab(fao’fbl )] (256)

and

(257)

The distribution functions will be ex

panded in Sonine polynomials (Braginskii,
1965):

ju] =

2v, N
RN EIC2 (258)
a k=0
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where
LA()=1, L) =i,
a5 7 1, (259)
L(ZJ/Z)(X)=—8——Ex+Ex ,

and so on. An exact solution would be obtained in the limit N —; 0 /l 1118 f;:crildktialt
sufficient accuracy is obtained by taking N =2. Note that the k=

coefficients are proportional to the mean velocity and the heat flux: o
uaO = uu"/ua’ ual =- %qu“/uupa‘

With the trial function given by (258),

! (261)
P = —7_' Z [uaHFu + %(qau/pa)Gu]
using the orthogonality of the Sonine polynomials, and
' kj (262)
S = —3—7;8'% Z anub Z.uuk(M:f:’uuj + Nahjub/)
a, b k.j
where
nyzil, 4mnyzizie‘lnA (263)
Yap =T 5 T 2.3

v,

The M*/ and N}/ are dimensionless matrix elements of the differential and
a a . .
integral collision operators, respectively. That is,

2v,f,
kU 2 a0 ) 2
"o ;,M:t{_ 3._-—41/ fd’v—':)" l(ki‘/z)(vz/uaz)cub( 3 LJO/Z)(D /va)»fbo) (264)

a

m,ug

and
PAVEY JoS 2
32 Y 2,.2 '—"‘—L(-J/Z) 02 /v ) 265)
R Vap akbj = W4 fdavv_”L(k}/Z)(v /Du)cab faO’ v, J ( / h) (

i i i isi tors are separately sclf-adjoint, in
the differential and integral collision opera rate
?lfec asl;ese given by (140) and (141), when T, =T, these matrix clements have the
symmetry properties
My =M} (266)
(267)

kj_ jk
n Vs Ngid = nyvaNia

or

/ ' (268) §
Ni = (m,/m,)"* Nib.

Using momentum conservation (25) with f,, =0, the following additional relatio
between matrix elements is found:

(269)
MS + N2k =0.
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Explicit expressions for these matrix elements for k, j <2 are as follows (Hirsh-
man, 1977).

00=___(H'L¢'/ﬂ)_=_N00’M0!=_§M=—N°', (270)
ab 2 2132 ba ab 2 2 21\5/2 ba
(1+v,,/v”) (1+vb/ua)
02__2 (]+ma/mh) —_ 02
b = T s s ba>»

8 (1402 /02)""

/ot

M=~ ,
(140 /02)"”
12 [%l(vh/vﬂ)4+6(vb/vu)2+ %]
Mot == 2 (271)
(1+ 03 /02)
2 [%i(”b/"a)s”g(”h/”«)"ﬂ“%Q(Ub/v,,)"+17(vb/va)2+%] 272)
Mab == ,
(1403 /02)""
n_ 217, (%/%)3 b 225 T, (%/Ua)s
A APy LI St T eSS 1)
(14 03/e0) b (14 03/02)
2625 T,  (v,/0,)°
22 la b a
Nt ="z 7, (274)

(1+ u,f/v‘f)g/2 '

Note that in the present transport theory application of these matrix elements
T, =T, must be taken, so that v} /v}=m,/m,. In fact, only if T,=T, can the
symmetry relations (266) and (268) be used to supply the remaining expressions for
k, j<2. Note that the M}/ and N/ do not depend on n,, ny, z, or z,; they depend
only on the mass ratio m,/m, and the ratio of the thermal velocities, v, /v,.
§—2P is minimized with respect to the variational parameters u,,, by using

(0/9u,)(S-2P)=0

(275)
which yields
8 N ki X v,
1/2 Znavab Z (Mal{uaj_*.Nabjuhj) =_—(F;8k0-Ga8kl)' (276)
3nV/ b j=0 T

These linear equations for the coefficients u,; are the same ones which are obtained
using the moment method (Hirshman, 1977). Using (276) to simplify (262) shows
that § = P (identically), so that the variational expression becomes S —2P = — P for
any number (N + 1) of terms in the trial function.

It is now convenient to regard the parameters u,,, q,, as given and to find
expressions for the friction force F, and heat friction G, in terms of them, Thus,
(276) needs to be solved for the u,, for k > 2, in terms of the U,o and u,,. Then,
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substitution of these back into (276) for k=0 and k =1 will yield relations of the
form

. 2 05 9up (1)
Fa=§(lllbullb+_5_1‘z pb)

v 2 quh) (278)
= aby + =I5 —.

H P ab
By substituting these into (261) and using S — ZR = — P it becomes cliear tl?dt the /;
obtained by solving the lincar cquations (276) in the manner dcgcnbcd.above arei
variational. Therefore, good accuracy is expected with only a few terms in the tria

fur;ic;lzﬁzosing N =2 in (258), that is three terms in the trial functions, only the

k = 2 version of (276) needs to be solved:

(M2u,;+ Nasz“bj) =0. (279)

2 2
"uZaZ"bzb
b j=0

These equations, one for each ion species a, are to be splved for the same nulmber
of unknowns, the u,,. The solution can be carried out using the method of Boley et

al. (1979), as follows. - '
’I(‘he summation over ion species indices b can be written as the sum over different

isotopes (i.e. different ion masses m,) of the sums over the different ionization states
(i.e. charges z,¢) for a given isotope:

b my i,
The species index b 1s equivalent to the pair of indices (m,, i,), in what follows.

Summing on the ionization state index i, in (279), over all states corresponding to a
s N
given mass m,, and dividing by I, n,z, gives:

; m i
j=0 my oy b b

The averages

1) I
ﬁak=2na23uak/2nazg ( ) g
ig ia

. . TR -
have been defined, which depend only on the indices m, k, and the fact thz}t MK
and NX/ depend only on the mass indices m,, m, has been used. Further, with the &

definition

Lk = {Z(chzZ)M‘fcj‘&,b + ():n,,zg) N, (o3) §

m. i, iy

zz: {lZ(Enblg)Mazzflﬁaj"'Z(anZg)Nazbjabj} = 0. (280)
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(280) can be written as

1
L LG, =~ Y Y LYa,,. (283)

ny, J=0m,

The solution can then be written in terms of the inverse of the matrix L22:

]
Ba=— L L L(L®)./LYa,,. (284)

J=0mym,

Since usually only a small number of different isotopes are of interest, the dimension
of the matrices L*, L', L2 can be considered to be small.

The number of possible ionization states for all of the isotopes is generally much
larger than the number of isotopes. However, the unknowns u,, can be determined
in terms of the averages i, in an even simpler way. For, by dividing (279) by n,z2
and subtracting (280), the terms containing the N/ cancel, and

éo[z( gn,,zg)Mj,;}(ua, ~a,)=0. (285)

Solving for u,, gives

1
Uy = ﬁul - [ Z Muzj(uuj - ﬁuj)}/Mazz (286)
j=0
where
MM = Z(Zn,,z,f)M:g. (287)

Thus, u§ing (236) and (284), the u,, are determined in terms of the U, and u,,
and substitution into (276) with & =0 and k =1 finally gives the inverse transport

relations of the form of (277) and (278). It is more convenient to express these in the
form )

4 myn,T, J
F = g 4a_ d ~u — —ah -~
“ 32 2 kgo(}“Ok(uak uak)+§hu0kubk) (288)
4 myn,I, [
Ga - _ alata s = —ab—
302 g2 kgo(l‘lk(“ak uak)+§bp'lkubk) (289)

where, using the results expressed by (284) and (286),

= MJ* —~ MM /M2 (290)

and

B = Loy - X XL (L), L2

n, my

(291)
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where
Uy = uall/va’ Un=-— %(q“"/v"p”) (292)

and where the averages indicated by the bars are defined by (281).

These relations are best evaluated by a computer, for any given problem. Since
only function evaluation and the solution of a small set of linear equations is
involved, the evaluation is not time-consuming. The inversion of (288) and (289),
giving the mean velocities and the heat fluxes in terms of the friction forces and heat
friction vectors, or using (252) and (255), in terms of the pressure and temperature
gradients, i.e. the transport relations, can also be done by using a computcr.

In some applications, it is the inverse transport relations in the form given by
(288) and (289) which are needed. For example, in Pfirsch—Schluter transport in a
toroidal confinement system (Hazeltine and Hinton, 1973; Hirshman, 1977), the
parallel flows u,, q,, are given, as a consequence of the geometrical and timescale
constraints, in terms of radial gradients, while the radial particle and heat fluxes are
determined by the parallel friction and heat friction. Thus, (288) and (289) lead
directly to radial transport relations for this application.

Moment equations

To summarize the results of the transport theory, the moment equations for a
multiple ion species plasma are now presented. In the following, subscripts a and b
refer to ionic species; electron quantities will be denoted explicitly by “e”. The
conservation of particles is expressed by

dn,

Frs ve(n.u,)=0 (293)
an,
iy

where the ion sources due to ionization and recombination have been included, with
S,, denoting the rate coefficients. A discussion of these coefficients is beyond the
scope of this article; all other such atomic effects, such as electron energy loss due to
ionization, will henceforth be omitted.

The ion version of the energy equation is, after summation over all ion species,

2 2ar)+ v-0= Tt E+ T(Quct warFu) (59 |
a a
where n =X n, is the total ion density. T is the common ion temperature, and ]
Q=T (ga+ 3n.Tua) (99 §
a b
is the total ion energy flux. The total electron-ion energy transfer rate is '
Qie = 'z:. Qe = 3”:;”‘ Z”’;”:z'z im” (T.-T) (297)
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where T and z are defined by (241) and (242), respectively. The remaining terms
on the rlght—hand side can be transformed by using

uu,-(Fae+ZFah) =u,(vp,—nze,E) (298)
b
which follows from the fact that u, satisfies the equation
U
- Vpu+n”ea(E+-—C—XB)+Fue+Zl"‘,h=0. (299)
h
The terms explicitly proportional to the electric field thus cancel, leaving
d(3
(39T v =0+ Du{ vr, - TE ). (300)

T_hf: terms on the right-hand side of the electron energy equation which are due to
collisions with the ions are just the negatives of the corresponding terms in the ion
energy equation. Thus, the electron energy equation is

a(3 -
E(—z—"cn)‘i- V.Qc =J.£ - Qic - Zuul.( vPa - ZFab) (301)
a b
where
Qc=qcl +%"cTcucl (302)

wherg the terms explicitly proportional to the electric field have added to give the
total joule heating rate.

The f]uxc§ which appear in these equations are the sums of contributions which
are perpendicular and parallel to the magnetic field:

nu,=n,u, +ifn,u (303)

a“al a“alf
qa =an_ + ﬁqu“ (304)
where 7 is a unit vector tangent to the magnetic field lines.

The perpendicular ion fluxes are given by

c
Bz B X Vpa + (nauai. )i + (nuual )e (305)

¢
nu, = nu-‘;E X B+

€y

. _where (n,u,,); is given by (177) with the electron term omitted. The electron

collisional contribution is given in terms of the perpendicular electron-ion friction
from (176):

C

("aua.L )e =- e Bz B X Fac (306)
a
— ne VL pa V_L pe 3
= —_ —_ + —
z,m 221, z,n, n, 2 Vale)-
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The perpendicular electron flux is

c c
nu,, =nc}—2-E><B— eBsz 2

_ ne VJ. P. + X:bzbv_i_ Ps _ }_ V_LTc) (307)
meﬂz'rci ne NeZer 2
The perpendicular ion heat flux is given by
> _Pa () (308)
== —"2BX VT, +q}
9as =75 eaBz qa1

with () given by (178), where the electron term can be neglected. The perpendicular
electron heat flux is

5 €Pe

qel=—_2_eBszV7;
4P 3 V;Pe+szhV¢Ph)_(l§_+\./§)vch}' (309)
m2r, |2\ n. BeZesr 4 e
The parallel electron flux is given by
] 310
ncuc||=—.l||c/e+ncucl'f ( )

where u,; is defined by (244) and j, is given by the tfansport relation (203). The
parallel eelcctron heat flux is given by the transport relation (204). In both (203) and

204), 7 is to be defined by (241). .
( Tge eparallel ion fluxes and the parallel ion heat fluxes can be obtained by

i 1 i i i d (289). Equations (254),
nverting the inverse transport relations given by (288) an (25
2252) ar%d (255) are then used for F, and G,. Note that in (252) the electron friction

term, F,,, is given by
Fo =~ Feap
where, using (239), (247) and (246),
2
n_z

—efa i F | R | (g~ )
Fooy= (Z n zz) ell o all eff
ccTce
with F,, given by (207).

(311)
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